Mycobacterium Biofilms
نویسندگان
چکیده
The genus Mycobacterium includes human pathogens (Mycobacterium tuberculosis and Mycobacterium leprae) and environmental organisms known as non-tuberculous mycobacteria (NTM) that, when associated with biomaterials and chronic disease, can cause human infections. A common pathogenic factor of mycobacteria is the formation of biofilms. Various molecules are involved in this process, including glycopeptidolipids, shorter-chain mycolic acids, and GroEL1 chaperone. Nutrients, ions, and carbon sources influence bacterial behavior and have a regulatory role in biofilm formation. The ultrastructure of mycobacterial biofilms can be studied by confocal laser scanning microscopy, a technique that reveals different phenotypic characteristics. Cording is associated with NTM pathogenicity, and is also considered an important property of M. tuberculosis strains. Mycobacterial biofilms are more resistant to environmental aggressions and disinfectants than the planktonic form. Biofilm-forming mycobacteria have been reported in many environmental studies, especially in water systems. NTM cause respiratory disease in patients with underlying diseases, such as old tuberculosis scars, bronchiectasis, and cystic fibrosis. Pathogens can be either slowly growing mycobacteria, such as Mycobacterium avium complex, or rapidly growing species, such as Mycobacterium abscessus. Another important biofilm-related group of infections are those associated with biomaterials, and in this setting the most frequently isolated organisms are rapidly growing mycobacteria. M. tuberculosis can develop a biofilm which plays a role in the process of casseous necrosis and cavity formation in lung tissue. M. tuberculosis also develops biofilms on clinical biomaterials. Biofilm development is an important factor for antimicrobial resistance, as it affords protection against antibiotics that are normally active against the same bacteria in the planktonic state. This antibiotic resistance of biofilm-forming microorganisms may result in treatment failure, and biofilms have to be physically eradicated to resolve the infection. New strategies with potential antibiofilm molecules that improve treatment efficacy have been developed. A novel antibiofilm approach focuses on Methylobacterium sp. An understanding of biofilm is essential for the appropriate management of patients with many NTM diseases, while the recent discovery of M. tuberculosis biofilms opens a new research field.
منابع مشابه
Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare.
Mycobacterium avium and Mycobacterium intracellulare were grown in suspension and in biofilms, and their susceptibilities to chlorine were measured. M. avium and M. intracellulare readily adhered within 2 h, and numbers increased 10-fold in 30 days at room temperature in biofilms on both polystyrene flasks and glass beads. The chlorine resistance of M. avium and M. intracellulare cells grown an...
متن کاملImportance of antibiotic penetration in the antimicrobial resistance of biofilm formed by non-pigmented rapidly growing mycobacteria against amikacin, ciprofloxacin and clarithromycin.
OBJECTIVES To study the resistance of biofilms developed by non-pigmented rapidly growing mycobacteria (NPRGM) against amikacin, ciprofloxacin and clarithromycin in an in vitro model using clinical strains of different species. DESIGN Antimicrobial susceptibilities of different clinical strains of Mycobacterium abscessus, Mycobacterium chelonae, Mycobacterium fortuitum, Mycobacterium peregrin...
متن کاملInhibition of Adherence of Mycobacterium avium to Plumbing Surface Biofilms of Methylobacterium spp.
Both Mycobacterium spp. and Methylobacterium spp. are opportunistic premise plumbing pathogens that are found on pipe surfaces in households. However, examination of data published in prior microbiological surveys indicates that Methylobacterium spp. and Mycobacterium spp. tend not to coexist in the same household plumbing biofilms. That evidence led us to test the hypothesis that Methylobacter...
متن کاملBiofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum.
Rapidly growing mycobacteria (RGM) are found in soil and diverse aquatic environments. Two species, Mycobacterium fortuitum and Mycobacterium chelonae, are associated with disease and are difficult to eradicate. Biofilm formation may be a contributing factor to their mode of transmission and their resistance to antimicrobial agents. We investigated the ability of the RGM species M. fortuitum to...
متن کاملDisruption of Mycobacterium smegmatis Biofilms Using Bacteriophages Alone or in Combination with Mechanical Stress
Environmental mycobacteria are capable of forming biofilms in low-nutrient environments, and these biofilms may act as reservoirs for opportunistic infections. The purpose of this study was to determine if bacteriophages could disrupt existing biofilms of acid-fast staining Mycobacterium smegmatis. Using the MBEC 96-well plastic peg assay system, M. smegmatis biofilms were created and then test...
متن کاملWhole-Genome Sequences of Four Strains Closely Related to Members of the Mycobacterium chelonae Group, Isolated from Biofilms in a Drinking Water Distribution System Simulator
We report here the draft genome sequences of four Mycobacterium chelonae strains from biofilms subjected to a "chlorine burn" in a chloraminated drinking water distribution system simulator. These opportunistic pathogens have been detected in hospital and municipal water distribution systems, in which biofilms have been recognized as an important factor for their persistence.
متن کامل